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Optimal Force Distribution for the Legs of a Quadruped Robot*

Xuedong Chen†, Keigo Watanabe‡, Kazuo Kiguchi‡, and Kiyotaka Izumi§

Abstract: The real-time force control of a quadruped robot involves optimization of an underdetermined force
system subjected to both equality and inequality constraints. A new method for optimal force distribution for the
legs of a quadruped robot is presented in this paper. It is characterized by transforming the friction constraints
from the nonlinear inequalities into a combination of linear equalities and linear inequalities, by eliminating the
linear equality constraints from the original problem to reduce the problem size, and by solving a quadratic op-
timization problem to meet the needs for quality of solution. The technique is compared with the existing QP
(Quadratic Programming) Method and Analytical Method to show its superior performance in terms of the prob-
lem size, quality of solution and the scope of application. The effectiveness of the proposed method is illustrated
by giving some simulation results of optimal foot force distribution for a quadruped robot.
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1. Introduction

AS a kind of legged vehicles, quadruped robots can be
applied in the work space with rough terrain, e.g., map

building on an uneven ground, hazardous tasks like land-
mine searching and removing, volcano data collection, etc.
The fact that the control strategy of a quadruped robot must
take the force distribution of the legs into account, is con-
sidered to be very important. A quadruped robot has not
only a kinematic topology, but also a redundant actuation.
This arises due to the general existance of three actuated
joints in each leg, resulting in more controlled actuators
than the degree-of-freedom of the body motion. There-
fore, mathematically there exist fewer force moment bal-
ance equations than unknown design variables, and the so-
lution to these equations is not unique. Moreover, such a
robot has physical constraints that can only be represented
mathematically as inequalities due to the nature of the con-
tacts involved, i.e., normal contact forces between the feet
and the ground cannot be negative, and the magnitude of
the tangential force at each foot cannot exceed the maxi-
mum force of static friction. In addition, the torque of each
joint must lie within the allowed range. Therefore, force
distribution for legs involves optimization of force for the
legs, considering the inequality constraints, same as that of
cooperating manipulators, mechanical hands, etc.

In recent two decades, many researchers have studied
this problem and have developed different algorithms for
the optimal solutions [1]–[25], in which there are mainly
four representative methods:
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1. Linear-Programming (LP) Method [1]–[5], [25], in
which this problem is formulated as a linear-
programming problem, by replacing friction cone
with a piecewise linear pyramid so as to express
friction constraints by linear inequalities. But this
method is difficult to be applied for complex systems
in real-time and it leads easily to discontinuous solu-
tions even under smooth changes in constraints [8];

2. Compact-Dual LP (CDLP) Method [6], this method
results in a smaller problem size by using the
compact-dual linear programming, but it cannot over-
come the discontinuous problem [8];

3. Quadratic Programming (QP) Method [7], [8], it is
superior to LP and CDLP in quality of solution and
also can be implemented in real-time because the
time for obtaining a solution does not depend on an
initial guess. However, the existing numerical exam-
ples were limited to finger system without mentioning
the applicability to walking robot. In a general walk-
ing robot, the number of constraints is larger than that
in a finger system. Furthermore, the quadruped robot
has troublesome kinematic topology. Therefore, it
may be difficult to implement this method in real-time
without reducing the problem size [15];

4. Analytical Method [9]–[13], this method is mainly
applied to the walking robot. It is characterized by
finding a relation among feet forces in order to pre-
vent legs from slipping, and consequently adding
equality constraints so that the underdetermined force
system may be transformed into a determined system
after combining inverse dynamic equations with the
equality constraints. However, it attempts only to pre-
vent leg slippage, neglecting the other inequality con-
straints.

In addition, some researchers proposed the optimal force
distribution scheme of multiple cooperating robots by com-
bining the Dual Method with the QP [14], [15].

For a quadruped robot, the optimization process involves
three aspects to be considered: the first is to prevent legs
from slipping; the second is to avoid the discontinuity of

c©1999 Cyber Scientific Paper No. 1345–269X/99/020087-08



88 X.-D. Chen, K. Watanabe, K. Kiguchi, and K. Izumi

Σo

O
X

YZ

F M

Σsi si
x *

y*z*
f xi

f yi
f zi

Fig.1 The force system acting on a quadruped robot

the foot forces for such a kinematic topology system; and
the third is to make the foot forces of swing leg increase
smoothly from zero, after contacting the ground so as to
avoid impact. Based on the existing methods, a new algo-
rithm on optimal force distribution for legs of a quadruped
robot is proposed in this paper. The main idea of our work
is originated from the combination of the QP Method with
the reduction of the problem size. The present approach
can eliminate the disadvantages of the Analytical Method
and the QP Method in optimization of force distribution for
a quadruped robot.

The rest of this paper is organized as follows. In Sec-
tion 2 the problem formulation is presented, which includes
mathematical description of the problem. Section 3 gives
reduction of the problem size, continuous solution for the
problem, and optimal solution for the problem. The exam-
ple and simulation results will be presented in Section 4.

2. Problem Formulation

The force system acting on a quadruped robot is shown
in Fig. 1. For simplicity, only the force components of
a foot are presented here. As has been usual in such
work, rotational torques at the feet are neglected. LetΣo

(O−XY Z) be the coordinate frame fixed at the robot body
in which the body is located in theX–Y plane andΣsi

(si − x∗y∗z∗) denote the coordinate frame fixed at the foot
i, in which the legi lies in thex∗–z∗ plane andz∗-axis is
normal to the support surface of the foot which is assumed
to be parallel to theX–Y plane.F = [Fx Fy Fz]T ∈ <3

andM = [Mx My Mz]T ∈ <3 respectively denote the
robot body force vector and moment vector, which result
from the gravity and the external force acting on the robot
body. Definefxi, fyi, andfzi as the components of the
force acting on the supporting footi in the directions ofX,
Y , andZ in Σo, respectively. The number of supporting
feet,n, can vary between 3 and 4 for a quadruped robot.
The force/moment quasi-static equilibrium equation of the
robot can be written as

AG + W = 0 (1)

with

G = [fx1 fy1 fz1 · · · fzn]T ,

W = [F T MT ]T ,

A =
[

I3 I3 · · · I3

B1 B2 · · · Bn

]
,

Bi =


 0 −zi yi

zi 0 −xi

−yi xi 0


 ,

whereI3 ∈ <3×3 is the identity matrix andG ∈ <9 or
∈ <12 is the foot force vector, corresponding to three or
four legs supporting, respectively.A ∈ <6×9 or ∈ <6×12

is a coefficient matrix which is a function of the positions of
the supporting feet, whereBi ∈ <3×3 is a skew symmetric
matrix consisting of (xi, yi, zi), which is the position co-
ordinate of the supporting footi in Σo. W ∈ <6 is a total
body force/moment vector.

It is clear that Eq. (1) is an underdetermined system and
its solution is not unique. In other words, the feet forces
have many solutions according to the equilibrium equation.
However, the feet forces of the quadruped robot, in fact,
must meet the needs for the following physical constraints;
otherwise they would be invalid.

First, all supporting feet should not slip when the robot
walks on the ground. It results in the following constraints:√

f2
xi + f2

yi ≤ µfzi, (i = 1, · · · , n), (2)

whereµ is the static coefficient of friction of the ground.
Second, since the feet forces are generated from the cor-

responding actuators of joints, it must take the physical lim-
its of the joint torques into account. Then it follows that

−τ i max ≤ JT
i Ri


 fxi

fyi

fzi


 ≤ τ i max, (3)

for i = 1, · · · , n, whereJ i ∈ <3×3 is the Jacobian of the
leg i, τ i max ∈ <3 is the maximum joint torque vector of
the legi, andRi ∈ <3×3 is the orientation matrix ofΣsi

with respect toΣo.
Finally, to assure definite foot contact with the ground,

there must existfzi such that,

fzi ≥ 0, (i = 1, · · · , n). (4)

Therefore, the problem of the foot force planning can be
described as a nonlinear programming problem. Clearly, it
is difficult to solve such a nonlinear programming problem
for real-time foot force distribution of a quadruped robot
with complex constraints.

3. Reduction of the Problem Size and the Solution

As shown in Fig. 2, most of researchers substituted
the inscribed pyramid for the friction cone formulated by
Eq. (2). Thus, the nonlinear friction constraints are approx-
imately expressed by the linear inequalities

fxi ≤ µ′fzi, fyi ≤ µ′fzi, (i = 1, · · · , n), (5)

whereµ′ =
√

2µ/2 for the (conservative) inscribed pyra-
mid. Therefore, the nonlinear programming can be trans-
formed into a linear programming, e.g., see [2], [6], and [7].
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To minimize the possibility of slipping, the force distri-
bution should be such that the maximum of the ratios of
tangential to normal forces at the feet is minimized. It has
been shown that, for a multi-legged robot, the force ratios
are minimized if all ratios are equal to the global ratio [10].
It is on the basis of this idea that Liu and Wen [13] found
the relationship among the feet forces and transformed the
friction constraints from the nonlinear inequalities into a
set of linear equalities so that the underdetermined force
system may become a determined system by combining
Eq. (1) with the set of linear equalities. However, it should
be noted that they obtained such ratios under the assump-
tion that all horizontal force components of the robot body
force/moment are zero. In the strict sense of the word, it
is only the optimal condition that prevents leg slippage for
the case of no horizontal force. So its scope of application
is limited. Moreover, the method only seeks for the min-
imum ratios of tangential to normal forces at the feet, at
the cost of neglecting the constraints expressed by Eqs. (3)
and (4). For example, consider that a quadruped robot,
whose mechanism is described inFigs. 3and4, walks on
the plain ground in a periodic crawl gait, with the stride
length of each swing leg to be 200 [mm], and the robot
body force/moment,Fz = 200 [N], Fy = 20 [N]. Using
the Analytical Method presented in the reference [13], the
results of the force distribution for the legs in a gait cycle
fzi (i = 1, · · · , 4) can be obtained as shown inFig. 5. It is
clear that in this case the constraintsfz3 ≥ 0 andfz4 ≥ 0
are violated.

Here we synthesize the advantages of the existing meth-
ods, that is, part of components of the feet forces satisfy the
relationship of global ratio of tangential to normal forces at
the robot body, and let the other components satisfy linear
inequality constraints as Eq. (5). For example, definingfxi

(i = 1, · · · , n) to be the former, andfyi (i = 1, · · · , n) to
be the latter, then we obtain

fxi = kxzfzi, (i = 1, · · · , n), (6)

fyi ≤ µ∗fzi, (i = 1, · · · , n), (7)

wherekxz = Fx/Fz is the global ratio ofX- to Z-direction
forces at the robot body.µ∗ is the given coefficient for fric-
tion constraints. According to Eq. (2), we have

µ∗ =
√

µ2 − k2
xz. (8)

Similarly, making a permutation offxi and fyi, then

0.4m

0.2m

O X

Y

Σo

x *

x *

x*

x *

y*

y* y*

y*

s1 s2

s3 s4

Σs1

Σ s3 Σ s4

Σ s2

− φ1 φ2

φ3 − φ4

Fig. 3 The vertical view of a quadruped robot
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Fig. 4 The basic mechanism of a leg

Eqs. (6) and (7) can be rewritten as

fyi = kyzfzi, (i = 1, · · · , n), (9)

fxi ≤ µ∗fzi, (i = 1, · · · , n), (10)

wherekyz = Fy/Fz andµ∗ =
√

µ2 − k2
yz.

Clearly, the force distribution becomes a linear problem
and its computation is considerably reduced by replacing
Eq. (2) with Eqs. (6) and (7) or Eqs. (9) and (10). In partic-
ular, it can overcome the demerit of the Analytical Method
as mentioned above.

3. 1 Continuous solution for the problem

A quadruped robot can realize its crawling using three
and four legs alternatively to support its body. However, it
must be taken into account how to avoid the discontinuity
of the feet forces. The consideration should be twofold: the
first is to assure that the foot force of the swing leg contin-
uously transits while the leg moves from free to placement
on the ground; the second is to make the foot force increase
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Fig. 5 The simulation result by using the analytical method

smoothly from zero in order to avoid impact resulting from
the placement of the swing leg.

For the convenience of explanation, let(t−j , t+j ) denote
the time period from the timet−j at which the legj (the

swing leg) is lifted, to the timet+j at which the legj is
placed; (t+j , t−k ) be the time period from the timet+j at
which the legj is placed, to the timet−k at which the leg
k (next swing leg) is lifted. It is obvious that the robot
uses three legs to support on the ground in the time period
(t−j , t+j ), whereas it uses four legs to do so during the time
period(t+j , t−k ).

In the time period(t−j , t+j ), n = 3, so thatG and A
become a vector of 9×1 and a matrix of 6×9, respec-
tively. Equation (1) contains nine unknown variables with
six equations. Although there are nine equations by com-
bining it with Eq. (6) or (9), actually there are only eight
independent equations in existence,

ÂĜ + Ŵ = 0, (11)

whereÂ ∈ <8×9 is the resulting matrix ofA after combi-
nation. Ĝ ∈ <9 is the foot force vector.Ŵ ∈ <8 is the
resulting vector ofW after combination.

Thus, the force distribution can be reduced to the force
planning subjected to the equality constraints expressed
by Eq. (11) and the inequality constraints expressed by
Eqs. (3), (4) and (7) or (10).

In the time period(t+j , t−k ), n = 4, so thatG is a 12-
dimensional vector, andA is a matrix of 6×12. For the
sake of continuity of solution, the foot forces of the legj
denoted byf j = [fxj fyj fzj ]T ∈ <3 should be changed
smoothly fromf j(t

+
j ) = 0 to f j(t

−
k ), which can be deter-

mined according to the force planning for three supporting
legs at the timet−k . Therefore, the foot force of the legj in
the time period(t+j , t−k ) can be expressed as

f j = δ(t)f j(t
−
k ), (12)

whereδ(t) is any desired continuous scalar function vary-
ing from δ(t+j ) = 0 to δ(t−k ) = 1. Thus,f j is regarded to
be known in this time period and Eq. (1) can be rewritten

as

[Ã Aj ]
[

G̃
f j

]
+ W = 0, (13)

whereÃ ∈ <6×9, G̃ ∈ <9, andAj ∈ <6×3. It follows that

Ã G̃ + (Ajf j + W ) = 0. (14)

Let W̃ = Ajf j + W ∈ <6. We then have

ÃG̃ + W̃ = 0. (15)

Since there are only eight independent equations among
Eqs. (15) and (6) or (9), we obtain the equality constraints
of the force distribution in the form expressed in Eq. (11)
by combining Eq. (15) with Eq. (6) or (9). Note here that
Â is the resulting matrix of̃A after combination, and̂W
is the resulting vector ofW̃ after combination. As a re-
sult, the force distribution in the time period(t+j , t−k ) can be
converted into one for three legs except for the legj, under
the consideration of continuous solution for the problem.

3. 2 Optimal solution for the problem

The solution to the inverse dynamic equations of a
quadruped robot is not unique, but it can be chosen in an
optimal manner by introducing an objective function. The
approach taken here is to minimize the sum of the weighted
torque efforts of the robot, which results in the following
objective function [8], [15]:

f(G) = pT G +
1
2
GT QG, (16)

with

pT =
[
τ̂T

1 JT
1 · · · τ̂T

nJT
n

]
∈ <3n,

Q =




J1q1J
T
1 · · · 0

...
. . .

...
0 · · · JnqnJT

n


 ∈ <3n×3n,

whereτ̂ i is the joint torque vector due to the weight and
inertia of the legi, J i is the Jacobian of the legi, andqi

is a positive definite diagonal weighting matrix of the legi.
This objective function is strictly convex.

Because the time for obtaining a solution does not de-
pend on an initial guess, a quadratic programming is su-
perior to linear programming in both speed and quality of
the obtained solution [8]. The general linear-quadratic pro-
gramming problem of the force distribution for legs of a
quadruped robot is stated by

minimize pT Ĝ +
1
2
Ĝ

T
QĜ, (17)

subject to ÂĜ + Ŵ = 0, (18)

BĜ ≤ C, (19)

where Ĝ ∈ <9 is a vector of the design variables (the
feet forces) and Eq. (17) is the objective function, while
Eqs. (18) and (19) represent the equality and inequality
constraints, respectively. It should be pointed out that,
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Eq. (18) denotes Eq. (11), and Eq. (19) is the resulting in-
equality constraints for the combination of Eqs. (3), (4) and
(7) or (10) where

B =
[
BT

1 BT
2 BT

3 BT
4

]T

∈ <9×24,

C =
[
τ T

1max τT
2max τ T

3max − τT
1max − τT

2max

−τ T
3max 0 0 0 0 0 0

]T ∈ <24,

with

B1 =


JT

1 R1 0 0
0 JT

2 R2 0
0 0 JT

3 R3


 ∈ <9×9,

B2 =


−JT

1 R1 0 0
0 −JT

2 R2 0
0 0 −JT

3 R3


 ∈ <9×9,

B3 =


 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1


 ∈ <3×9,

B4

=


 0 1 −µ∗ 0 0 0 0 0 0

0 0 0 0 1 −µ∗ 0 0 0
0 0 0 0 0 0 0 1 −µ∗


 ∈ <3×9.

To simplify the problem, the general solution is ob-
tained to eliminate the linear equality constraints from the
problem, before quadratic-programming technique is ap-
plied. Because there are eight linear independent equa-
tions, Eq. (18) may be transformed into a desired row-
reduced echelon form [6], which has an identity matrixI8

∈ <8×8 in the first eight columns of the resulting matrix
such that

[I8 Âr]
[

Ĝb

Ĝr

]
+ Ŵ r = 0, (20)

whereÂr ∈ <8 is the remaining column of the matrix̂A
after transformation.Ĝb ∈ <8 is the partial vector of̂G.
Ĝr ∈ < is the unknown element of̂G which denotes the
design variable.Ŵ r ∈ <8 is the resulting vector of̂W af-
ter transformation. Equation (20) may be rewritten by the
following form

I8Ĝb + ÂrĜr + Ŵ r = 0, (21)

which yields
Ĝb = −Ŵ r − ÂrĜr. (22)

Finally, it results in

Ĝ =
[

Ĝb

Ĝr

]
=

[−Ŵ r

0

]
+

[−Âr

1

]
Ĝr. (23)

Now let Ĝ0 = [−Ŵ
T

r 0]T ∈ <9 andN = [−Â
T

r 1]T

∈ <9, then Eq. (23) becomes

Ĝ = Ĝ0 + NĜr . (24)

Substituting Eq. (24) into Eqs. (17) and (19), the linear
quadratic programming problem can be expressed by

minimize f(Ĝr), (25)

subject to BNĜr ≤ C − BĜ0, (26)

where

f(Ĝr) = pT Ĝ0 +
1
2
Ĝ

T

0 QĜ0 + pT NĜr

+
1
2
Ĝ

T

0 QNĜr +
1
2
Ĝ

T

r NT QĜ0

+
1
2
Ĝ

T

r NT QNĜr .

SinceĜr is a single design variable denoted byx, the op-
timal force distribution can be further presented as

minimize a0x
2 + a1x + a2 (27)

subject to x ∈ [b1 b2] (28)

where

a0 =
1
2
NT QN ,

a1 = pT N +
1
2
Ĝ

T

0 QN +
1
2
NT QĜ0,

a2 = pT Ĝ0 +
1
2
Ĝ

T

0 QĜ0.

in which [b1 b2] denotes the bound resulted from Eq. (26).
Since it is clear thata0 > 0 because of the positive-definite
matrix Q, there must be an optimal solution for the force
distribution.

4. Numerical Example

The basic mechanism, size and parameters of a
quadruped robot are shown in Figs. 3 and 4, wherea =
0.043 [m], b = 0.2 [m], d = 0.155 [m], and e = 0.045
[m]. There are three actuated jointsφi, ϕi, andγi in the
leg i, whose torques are denoted asτi1, τi2, andτi3, for
i = 1, · · · , 4, respectively. Assume the weight of leg is
ignorable, then the Jacobian of the legi can be expressed
by

J i = σ [J i1 J i2 J i3] , (29)

for i = 1, · · · , 4, where

J i1 =


 0
−[a + bS(ϕi + γi) + dSϕi]

−[a + bS(ϕi + γi)]


 ,

J i2 =


 e + dCϕi + bC(ϕi + γi)

0
0


 ,

J i3 =


 0

bC(ϕi + γi) + dCϕi

bC(ϕi + γi)


 ,

c©1999 Cyber Scientific Machine Intelligence & Robotic Control,1(2), 87–94 (1999)



92 X.-D. Chen, K. Watanabe, K. Kiguchi, and K. Izumi

andσ = 1 for i = 1 or 3, σ = −1 for i = 2 or 4, andS∗
andC∗ denotesin∗ andcos ∗, respectively. From Fig. 3,
the orientation matrix ofΣsi with respect toΣo can be ob-
tained by

Ri =


 cos φi sinφi 0
− sin φi cos φi 0

0 0 1


 . (30)

The known crawl gait is a prerequisite for the optimiza-
tion technique presented above because all joint positions
are to be determined only from the known gait by us-
ing the inverse kinematics [26], [27]. Here we assume the
quadruped robot is crawling in the direction ofY -axis of
Σo on the uneven ground with the static coefficient of fric-
tion µ = 0.05. The initial position coordinates of feet in
Σo are (in meter):(−0.3, 0.2,−0.243), (0.3, 0.2,−0.243),
(−0.3,−0.2,−0.243), and (0.3,−0.2,−0.243), respec-
tively. The sequence of swing leg generated is 3→ 1 →
4 → 2. The stride length of every swing leg is 0.2 [m],
the nextZ-coordinates of the feet placements arez1 =
−0.243 [m], z2 = −0.238 [m], z3 = −0.243 [m], and
z4 = −0.248 [m], respectively. The duty factors (the time
fraction of a gait cycle timeT in which a leg is in the sup-
porting phase [13]),βi = 0.8, for i = 1, · · · , 4, i.e., the pe-
riod of (t−j , t+j ) is T/5, and the period of(t+j , t−k ) is T/20.
Then we assume that the maximum joint torque vector (in
Nm) is τ i = [40 40 40]T and the body force/moment is:
for case I,Fx = 0, Fy = 0, Fz = −250 [N], M = 0;
for case II,Fx = −5 [N], Fy = 10 [N], Fz = −250 [N],
mx = 1 [Nm], my = mz = 0.

4. 1 Simulation result for case I

For the case I,kyz = 0, µ∗ = 0.05, δ(t) here is a
linear scalar function. The objective function of the op-
timization problem taken here is to minimize the internal
force [8], [15], i.e.,p = 0 (the zero vector), andQ = I
(the identity matrix). Solving Eqs. (27) and (28) and sub-
stituting the solution into Eq. (23), the feet forces can be
obtained. Figure 6 shows the foot force distribution in a
gait cycle. Sincefxi = fyi = 0 (i = 1, · · · , 4) the ratio of
tangential to normal forces at the feet in a gait cycle is

√
f2

xi + f2
yi

fzi
= 0.

It is found that the feet of the robot don’t slip during their
standing phases because the ratio of tangential to normal
forces at every foot is less than the static coefficient of fric-
tion. Furthermore, it is shown that the foot force of the
swing leg increases smoothly from zero to the desired force
so that its discontinuity is effectively excluded as shown in
Fig. 6. Substituting the feet forces into the following equa-
tion, the joint torques of the leg can be determined


 τi1

τi2

τi3


 = JT

i Ri


 fxi

fyi

fzi


 , i = 1, · · · , 4. (31)

Here we have shown the result of the leg 2 inFig. 7.
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Fig. 6 The foot force distribution for case I
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Fig. 7 The joint torques of the leg 2 for case I

4. 2 Simulation result for case II

For the case II,kyz = −0.04, µ∗ = 0.03, δ(t) is a linear
scalar function. Similarly, letp = 0 andQ = I . The foot
force distribution obtained in a gait cycle is presented in
Fig. 8. The ratio of tangential to normal forces at the feet
in a gait cycle is

0.0427 ≤
√

f2
xi + f2

yi

fzi
≤ 0.05.

Similarly, it is easily found that the three aspects consid-
ered are entirely realized in the optimal solution in Fig. 8.
The joint torques of leg 2 in a gait cycle are shown inFig. 9.

5. Conclusions

An efficient algorithm for optimal constrained solution
of the force distribution problem for a quadruped robot, has
been described in this paper. This method contains four
steps. First, the friction constraints are transformed from
the nonlinear inequalities into a set of linear equalities and
linear inequalities that satisfy the condition to prevent leg
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Fig.8 The foot force distribution for case II

slippage. Second, the general solution of the linear equality
constraints including those of the friction constraints and
the inverse dynamics equations is obtained by transform-
ing the under-specified matrix into row-reduced echelon
form. Third, the linear equality constraints of the original
problem are eliminated by substituting the general solution
into the inequality constraint equations and the objective
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Fig.9 The joint torques of the leg 2 for case II

function. As a consequence, the original problem becomes
an optimization of a quadratic function with one unknown
quantity. Finally, the optimal constrained solution for the
force distribution problem can be obtained by solving the
optimization equation. Moreover, in the case of four legs
supporting the robot body, the foot forces of the previous
swing leg are designed to change smoothly from zero to the
ultimate values when the next swing leg is lifted.

Since the problem size of the proposed approach was
smaller than those of the problems presented in [8], [14],
and [15], it was beyond doubt that the method can be used
for the controller in real time. The allowed interval of
the design quantity expressed in Eq. (28) resulted from the
physical constraints given in Eqs. (3), (4) and (7) or (10),
therefore, it was shown that the proposed approach was su-
perior to the Analytical Method [9]–[13] in both the scope
of application and quality of solution. The effectiveness of
the proposed method was demonstrated through two simu-
lations of the foot force distribution for legs of a quadruped
robot.
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