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Multilevel Multiagent Based Team Decision Fusion for
Autonomous Tracking System*
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Abstract: Multilevel fusion is a key issue for developing the decision-making kernel of multiagent systems.
This article presents a formulation of predictive decision-making algorithm for multilevel multiagent based team
decision-making system with the I/O mode characterizations of feature in–decision out or data in–decision out
methods. The sequential data fusion is conducted through a dynamic behavior modeling method capable of esti-
mating the observed system parameters from the raw sensory measurements over period of time. The temporal es-
timated model is used to forward prediction of the observed system output for decision-making. A self-evaluation
method to estimate the prediction quality is used to generate the individual decision confidence for final decision
integration, which is conducted through a multi-layered fuzzy linguistic reasoning engine. The method is imple-
mented for an autonomous tracking system that consists of a target tracking agent whose inputs are visual and
ultrasonic range measurements and a collision avoidance agent whose inputs are ultrasonic range measurements.
The experimental results conducted by a mobile robot and intelligent electrical wheelchair will demonstrate the
feasibility, accuracy, and robustness of the system based on the multisensor fusion method.
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1. Introduction

A SYSTEM only with single perceptual sensor has its
inherent limit of capabilities. Due to the possible

weaknesses of uncertainty, missing observation, and in-
completeness of single sensor, there is a growing need to
integrate and fuse multisensor information for advanced
systems with high robustness and flexibility. The multime-
dia sensor fusion system for realistic application on auto-
mated videoconferencing and surveillance [1] is an excel-
lent example of operational fusion systems. It integrates
the stereo sound and color video information for improv-
ing the system ability and performance to detect and track
human speaker. The accurate differential global position-
ing system [2] that integrates rate gyro, speedometer, and
GPS receivers for the application on vehicle localization is
another successful example of multiple sensor fusion sys-
tems.

The multisensor fusion and integration concept has been
applied in a wide variety of application fields, such as mil-
itary command, image processing, robotics, automation,
and environmental monitoring. Using multisensor fusion
techniques on a system may enhance the quality of sys-
tem performance of reliability, robustness, confidence, ef-
ficiency, and resolution as Varshney’s discussion [3]. Luo
and Kay suggest the taxonomy with four levels of sensor
fusion: signal level, pixel level, feature level, and sym-
bol level[5]. Time varying sensor measurements corrupted
with noise can be fused atsignal levelwhere great degree
of sensory registration is required.Pixel-levelfusion can
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be used to combine multiple images for richer information
content. The environmental abstraction extracted from raw
sensor data can be combined by thefeature-levelfusion to
increase the likelihood or obtaining additional composite
features.Symbol-levelfusion is used for making final de-
cision through the symbolic reasoning processes that inte-
grate multiple symbols derived from sensory aspect of en-
vironment.

A complete intelligent system may involve multiple-
level hierarchical sensor fusion processes for final decision
[1], [2]. For design and implementation it can be simpli-
fied to consider the following fusion processes based on I/O
characterizations as Varshney’s classification [3], i.e.data
in–data out, feature in–feature out, decision in–decision
out, data in–feature out, feature in–decision out, anddata
in–decision out. Dasarathy’s classification [4] doesn’t con-
sider thedata in–decision outprocess, but add atemporal
fusionthat is used for data/feature/decision integration over
a period of time. The latest two fusion types of Varshney’s
classification are especially important in most intelligent
motion control systems that required qualified performance
of fast-response efficiency, high flexibility, and robustness,
such as navigating a mobile robot [6] in uncertain envi-
ronment, mobile tracking of various targets with nonlinear
motion behavior [7], and the autonomous land vehicle road
following[8].

To reach the qualified performance through low-cost
processing units and multiple sensors of the system, it is
needed to reduce the complexity of the multilevel fusion.
The ALVINN project made such efforts on navigating con-
trol of a land vehicle on a highway using a neural net-
work that inputs color image pixels and outputs motion
decision [8]. The integrated multi-behavior system [6] by
multi-layered fuzzy logic reasoning engine with multisen-
sor input and motion decision output has also contributed
in this area.
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Fig. 1 The conceptual architecture for sensor fusion across multiple levels

For the system uses multiple sensors with different res-
olutions or with uncertain noisy outputs of data for motion
decision, it is difficult to employ a method for accomplish-
ing sensor fusion across levels. There are two major rea-
sons, one is the little common of sensory output and the
other is the different acquisition frequency of the sensor
modules. The two problems can be solved based on the
concept of signal-level and symbol-level fusion individu-
ally. Signal-level fusion requires stochastic filter that needs
high degree of sensory registration information in the fu-
sion processes. The Kalman filter based method for global
positioning system [2] is an example of signal-level fusion.
The key point of the symbol-level fusion is to integrate
multiple symbols of sensory abstraction by referring to the
symbol evidential confidence. The use of D-S (Dempster-
Shafer) theory to integrate four types of sensors for envi-
ronmental recognition is an example [9] of symbol-level
fusion.

This article presents a formulation of predictive
decision-making algorithm for multilevel multiagent based
systems with the I/O mode characterizations of feature in–
decision out or data in–decision out. The proposed method
involves a dynamic behavior estimator for data prediction
over a period of time to solve the problem caused by var-
ious sensor-response time and multi-layered fuzzy reason-
ing engine to integrate the predicted data and confidence
sets. The predictive fusion method can provide the system
with faster response performance [7] and can compensate
the sensory data loss caused by the potential detection error
or time-delay. The multi-layered fuzzy reasoning engine
can perform fast fusion for multi-dimensional input [6] at
the signal or symbol levels. The method is implemented
for an autonomous tracking system that consists of a target

tracking agent whose inputs are visual and ultrasonic range
measurements and a collision avoidance agent whose in-
puts are ultrasonic range measurements. The experimental
results conducted by a mobile robot and intelligent elec-
trical wheelchair will demonstrate the feasibility, accuracy,
and robustness of the system based on the multisensor fu-
sion method.

2. Conceptual Architecture for Multi-Level
Fusion

Advanced multisensor based systems for some sets of
goals or tasks always involve a team of local decision
maker that works cooperatively to solve decision problems
[10]. Each of local decision makers in the system can be
treated as an agent who is an expert capable of lower level
fusion to suggest recommendations for the global decision
maker [11]. The function of the global decision maker is to
fuse the local decisions from the agents to derive the team
decision using symbol-level fusion. Therefore each agent
needs to perform sensor fusion across levels and the global
decision maker works in high-level symbolic fusion. The
objective in this research is to develop a flexible multilevel-
fusion method for decision-making of local agents and the
global decision maker.

The conceptual architecture for decision making from
the multilevel fusion of the multiple time-varying data, fea-
tures, and symbols is shown inFig. 1which is based on the
four levels of Luo and Kay’s taxonomy [5]. In the lower-
level fusion of time-sequential data fusion, we first assume
the parameters of detected target model are unknown in
a priori. The adaptive modeling modules are used to on-
line estimate the temporal-change of dynamic parameters.
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Based on the estimated model parameters it can perform
the prediction for the coming sensory data/measurements
for higher-level fusion. The look-ahead method has the ad-
vantage of fast error convergence rate for high performance
systems, and can perform data extrapolation when data loss
problem occurs, but we have to evaluate the confidence of
the prediction to ensure the validity. For this purpose, the
self-evaluation module calculates the confidence according
to the modeling accuracy and timing parameters. The de-
tails of this issue are discussed in Section 3.

Fuzzy inference theory has been successfully applied in
many data fusion applications. For higher-level fusion and
decision-making we use the multi-layered linguistic infer-
ence method. The inputs for fusion process are first trans-
lated to fuzzy linguistic representation by the membership
functions, e.g. the triangular function shown in Eq. (1):

µA(x) =




0 for x < α
(x−α)
(γ−α) for α ≤ x < γ
(β−x)
(β−γ) for γ ≤ x < β

0 for x ≥ β

(1)

whereγ = (α+β)/2. Through the membership functions,
an inputx falls into the range ofα, β can be represented by
a set of such fuzzy linguisticFx = [µa1 , µa2 , · · · , µan ].
The fuzzy linguistic interference process is a rule-based
method, e.g.Mamdanimethod [12]. The final decision is
accomplished through a defuzzification function.

Each of the linguistic inference blocks in the architec-
ture may include multiple input lines, where the input num-
ber is dependent on the application. To consider the sys-
tem efficiency and easy implementation, the linguistic in-
ference block is designed by multi-layered fuzzy inference
engine. Each inference process is called elementary engine
that handles two inputs and outputs a fusion data of fuzzy
linguistic representation as the example shown inFig. 2.
The elementary engine performs fusion using lookup ta-
ble and minimum-maximum processes such as theMam-
dani method [12]. For a linguistic inference block with
m inputs the total number of the elementary engines and
needed fuzzy rule sets are2m/2 −1 if m is even; otherwise
2(m−1)/2. Therefore, for a 5-level fuzzy linguistic repre-
sentation the total rules needed in them-input block are
25 × (2m/2 − 1) if m is even; otherwise25 × 2(m−1)/2.
Compared to the single-layered inference engine that needs
5m rules, the multi-layered method will result in a better
efficiency for the system with large amount of inputs [1].

3. Adaptive Modeling of Sequential Sensory Data

The problem addressed in this section is to explore the
dynamic modeling method of the time-varying sensory
measurements(t). For continuously detecting an unknown
dynamic target we can model the motion dynamics using
nth-order ordinary differential equations as follows:

dnz(t)
dtn

+ a1
dn−1z(t)
dtn−1

+ · · ·+ anz(t) = b (2)

wherez(k) =
∑k

t=1 s(t) is the accumulated generating
operator (AGO). In grey theory, Eq. (2) is called “white de-
scriptor” for modeling the system so that we can find its pa-

F5

F1

F2 F4

F3

F6

F7

Fig. 2 Illustration of the multi-layered fuzzy linguistic inference engine
with two inputs represented by five-level fuzzy linguistic

rameters(a1, a2, · · · , an, b) directly from the observed sys-
tem outputss(t). To estimate the parameters of the partial-
known system or called “grey system,” it is approximated
by the following grey-differential equation [13]:

dnz(t)
dtn

+ a1
dn−1z(t)
dtn−1

+ · · ·+ ang(t) = b (3)

whereg(t) = (z(t + 1) + z(t))/2. We can obtain the opti-
mal parameters(a1, a2, · · · , an, b) by least square estima-
tion algorithm by introducing the accumulated generating
operation in a time interval. For simplification, the sampled
time of past measurement is taken as a unit. The derivative
terms fromm = 1 to n of Eq. (3) in a discrete system can
be written as:

dmz(t)
dtm

=
dm−1z(t)
dtm−1

− dm−1z(t − 1)
dtm−1

. (4)

Substitute the sequential data ofX andZ in the time in-
terval t = [1, 2, · · · , ξ] into Eq. (3), we get the following
matrix relation:

Y =
[

dnz(2)
dtn

dnz(3)
dtn · · · dnz(ξ)

dtn

]
= [A B] φ (5)

where

A =



−dn−1z(2)

dtn−1 −dn−2z(2)
dtn−2 · · · −dz(2)

dt

−dn−1z(3)
dtn−1 −dn−2z(3)

dtn−2 · · · −dz(3)
dt

· · · · · · . . . · · ·
−dn−1z(ξ)

dtn−1 −dn−2z(ξ)
dtn−2 · · · −dz(ξ)

dt


 ,

B =




−1
2 (z(2) + z(1)) 1

−1
2
(z(3) + z(2)) 1

...
...

−1
2
(z(ξ) + z(ξ − 1)) 1


 ,

and
φ =

[
a1 a2 · · · an b

]T
.

For the case ofξ > n + 1 we can apply ordinary least
square estimation with a linear modelY = [A B]φ. By
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minimizing the least square error term using the matrix
derivation with respect toφ, the optimal solution

φ̂ =
[
â1 â2 · · · ân b̂

]T
can be obtained by the following equation:

φ̂ =
(
[A B]T [A B]

)−1

[A B]T Y. (6)

Similarly, for the caseξ ≤ n + 1, we can calculate the
optimal parameters by minimum-norm method that mini-
mizes the(φT φ)/2 under the constraint ofY = [A B]φ.
The corresponding solution forφ is obtained by the follow-
ing equation:

φ̂ = [A B]T
(
[A B] [A B]T

)−1

Y. (7)

The estimated parameters can be brought into the re-
sponse solution of thenth-order ordinary differential equa-
tion Eq. (2) for the prediction of the accumulated generat-
ing operator value att > ξ. In real applications, the higher
order AGO model of Eq. (2) is more sensitive to the signal
input and the solution of parameters is more difficult to be
found than lower level model. For example, the solution of
the first order AGO model is:

ẑ(t + 1) =

(
z(1) − b̂

â1

)
e−â1t +

b̂

â1
(8)

and the solution of2nd-order AGO model is:

ẑ(t + 1) = c1e−λ1t + c2e−λ2t +
b̂

â2
(9)

whereλ1 andλ2 are the eigenvalues of the system. Finally,
the prediction resultsp of the data att = ξ + ∆t can then
be obtained by:

sp(ξ + ∆t) = ẑ(ξ + ∆t) − ẑ(ξ + ∆t − 1). (10)

4. Self-Evaluation of the AGO Model

To evaluate the dynamic models we can bring the vari-
ablet (i.e. t = 1, 2, · · · , ξ) into Eq. (10) and calculate the
error between the estimated data and the measurements by
the following equation:

ε(t) = sp(t) − s(t). (11)

The average of absolute errors can be obtained through the
following equation:

ε̄ =
1
ξ

ξ∑
t=1

|ε(t)| (12)

and the error variance is calculated by:

σ =

√√√√1
ξ

ξ∑
t=1

(|ε(t)| − ε̄)2. (13)

The variance of the data can be described as:

ρ =

√√√√1
ξ

ξ∑
t=1

(s(t) − s̄)2, (14)

Target: Luoson #3
Tracker:
Chung Cheng #1

Fig. 3 Experimental setup for intelligent target tracking, where the Tar-
get is an electrical wheelchair and the Tracker is an autonomous
mobile robot

where s̄ = (1/ξ)
∑ξ

t=1 s(t). The quality indexQ of the
learned AGO model is defined by the ratio of the two vari-
ances as the following equation:

Q =
σ

ρ
. (15)

According to theQ we can evaluate the confidence of
the prediction, i.e. the confidence is proportional toQ−1.
Beside, the confidence is also proportional to the inverse of
time-delay∆t. Therefore, we define the confidenceC of
current prediction based on the latest learned AGO model
as Eq. (16):

C(t) = exp
(
−Q∆t

τ

)
(16)

where impedance coefficientτ > 0 can be set according to
the sensor parameter of accuracy.

5. Illustrative Application

This section presents the experiment of autonomous tar-
get tracking system using the adaptive modeling method
and the multi-layered fuzzy reasoning engine based on
the conceptual architecture. The experimental setup con-
sists of one autonomous mobile robot and a multisensor-
based electrical wheelchair as shown inFig. 3. The mo-
bile robot “Chung Cheng-1” [6] is a three-wheel mobile
platform equipped with a vertical sliding manipulating arm
and other sensory modules. The experimental target is the
multisensor-based electrical wheelchair named “Luoson-3”
which was developed in our laboratory. The mobile plat-
form is driven by the differential velocity from the two
individually controlled rear wheels. The Chung Cheng-1
served as a tracker and it is desirable to keep a constant
distance from the target Luoson-3 in the dynamic changed
environment with unknown obstacles. When the tracker
is tracking the target the man may walk through the inter-
val casually between the target and tracker as shown in the
Fig. 3.

5. 1 System implementation

Two types of sensors for target tracking agent are
equipped on our autonomous mobile robot “Chung-Cheng-
1” which is used in the experiments, one is an ultrasonic
range sensor and the other is a color vision system. The
ultrasonic sensor is used directly to measure the distance
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Fig.4 Implementation of target tracking system to integrate the visual detection and ultrasonic sen-
sory data for fusion operation and decision-making based on the generalized architecture

between the target and the robot. The color vision is based
on the color-histogram backprojection method [14] to de-
tect the marked tag of target. The ultrasonic range sensor
has the advantage of high-frequency detection rate of 15
Hz, but its resolution is limited in 1 [in]. The visual de-
tection is operating in 5 Hz and its resolution is limited in
0.1 [in]. One major drawback of the vision system based
on the histogram backprojection method is that the mea-
surements may contain noisy uncertainty due to the marked
area size. The distance measurement from vision system is
floating in different tests even both the target and tracker
are static. Therefore, the fusion of these two sensing re-
sults will be meaningfully necessary for accurate motion
decision-making.

Figure 4 illustrates the implementation structure of the
autonomous target tracking system. It contains two ma-
jor agents for local decisions, one is the target-tracking
agent whose inputs are the target position measurements
from ultrasonic and vision sensors and the other is the
collision-avoidance agent whose inputs are the surround-
ing range measurements from 16 ultrasonic sensors. The
target-tracking agent is shown in the shadowed area in
Fig. 4, whereux is the sequential measurements of dis-
tance between robot and target from the ultrasonic range
sensor. Similarly,vx is the distance measurement from the
visual detection andsx is the robot driving velocity. The
local decision relative to target position is made by fusion
of the two sensory data, the error of predicted distance and
the desired distance 40 [in], and the error changes. It will

output the local decisionD1 and the relative confidenceC1

of D1, whereC1 is calculated from the fusion of the two
prediction confidences and the difference of the two pre-
dictions. The local decision represents the relative velocity
of target and tracker.

The collision avoidance agent is based on our previous
developed method in [15], which integrates the ultrasonic
range sensor array equipped on the mobile robot to detect
obstacle and make motion decision. The confidence of the
decision from collision avoidance module is inversely pro-
portional to the distance from robot to the closest obstacle.
The final decision calculated by fusing the two local deci-
sions is the absolute driving velocity of mobile robot.

5. 2 Experimental results

The target tracking results for the period of 45,000 [ms]
are shown inFig. 5. The robot follows the target by keeping
a distance of 40 [in] from the target. It starts on tracking
the target from time 0 [ms] and slows down to avoid the
potential collision to the human at 7,500–12,000 [ms] as
shown in the Fig. 5(a). After the human passes the inter-
val between robot and target it continuously tracks the tar-
get and smoothly approaches the target at 12,000–35,500
[ms], and so on. Figures 5(a) and (b) are the measurement
and prediction results from vision system and the ultra-
sonic sensor respectively. The measurements are plotted as
dot points in the figures and the prediction results are plot-
ted as marked lines. At time interval 7,500–12,000 [ms]
the human walk across the interval between the robot and
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Fig.5 Experimental results of the intelligent target tracking system: (a) the vision measurement and
prediction results, (b) the ultrasonic sensor measurement and prediction results, (c) confi-
dences of target position prediction, (d) confidence of local decisions, and (e) local decisions
and final decisions

target. This causes the vision system failure on detecting
the target (i.e. the zero value of the plot) at time interval
8,000–12,000 [ms]. For the case, the system extrapolates
the target position by prediction based on the previously
obtained AGO model and the self-evaluated confidence is
decreased as the time increased as shown in Fig. 5(c).The
case at time interval 35,500–39,500 [ms] is similar. In the
mean time, the measurements from ultrasonic sensor are
the distance between target and obstacle. This results the
target tracking module to make a rapid deceleration deci-
sion for the tracker robot as shown in Fig. 5(e). Due to the
large difference of the two predictions and the low confi-
dence of the vision prediction, the decision confidence of

target tracking module becomes low (e.g. see the Fig. 5(d)
t =7,500–12,000 [ms]). On the other hand, the collision
avoidance module reports a high confidence of control de-
cision at the periods. This leads the robot slowing down to
avoid the potential collision according to the fusion of the
two decisions.

Without obstacle interrupting (i.e. time 0–7,500,
12,000–35,500, and 39,500–45,000 [ms]) the tracking sys-
tem operates as a fusion mechanism for integration of the
redundant data under feature level. The obstacle avoid-
ance module reports a maximum decision 70 for the robot
but the confidence is zero (i.e. useless for final decision
fusion). Therefore, the final decision in the case is fully
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dependent on the local decision from target tracking mod-
ule. The overall result of this experiment shows the suc-
cess of developing an intelligent target tracking system in
real robot applications. It also demonstrates the capabil-
ity of adaptive multilevel fusion and decision kernel for the
robust systems.

6. Conclusions

This paper has presented a formulation of predictive
decision-making algorithm for multilevel multiagent based
team decision systems with the I/O mode characteriza-
tions of feature in–decision out or data in–decision out.
The illustrative experimental results of autonomous target-
tracking application, i.e. a typical multilevel multiagent
based team decision system, have shown the success of the
method. In addition to the multilevel fusion characteris-
tic, the generalized architecture and the adaptive model-
ing method provide the system designers with systematical
and modularized means to design the decision kernels of
the systems with multiple sensors across levels without the
need ofa priori model parameters of the observed data dy-
namics. In the future, we will focus on real-time embedded
intelligent system based on this multilevel multiagent based
team decision architecture.
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