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Generalized Asymmetrical Bidirectional Associative Memory*

Tae-Dok Eom†, Changkyu Choi†, and Ju-Jang Lee‡

Abstract: A classical bidirectional associative memory (BAM) suffers from low storage capacity and abundance
of spurious memories though it has the properties of good generalization and noise immunity. In this paper, Ham-
ming distance in recall procedure of usual asymmetrical BAM is replaced with modified Hamming distance by
introducing weighting matrix into connection matrix. This generalization is validated to increase storage capacity,
to lessen spurious memories, and to enhance noise immunity using simulation work.
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1. Introduction

THE original bidirectional associative memory (BAM)
was proposed by Kosko [1] extending the Hopfield

auto-associative memory to a bidirectional one. It can as-
sociate an input pattern with a different stored output pat-
tern of a stored pattern pair. Owing to its good general-
ization and noise immunity, BAM is well-suited for pattern
recognition. Among many efforts to improve the perfor-
mance of Kosko BAM (KBAM) by introducing new learn-
ing algorithms and adding dummy neurons, more layers, or
interconnections inside each layer, the symmetrical BAM
using the Hamming stability learning algorithm (SBAM)
achieves the highest performance [2]. However, the logi-
cal symmetry of SBAM limits its use for knowledge rep-
resentation and inference. To overcome the drawback, an
asymmetrical BAM (ABAM) was proposed [3], which re-
quires linear independence of stored patterns limiting its
storage capacity. Inferred from that the capacity of feedfor-
ward multilayer network and radial basis function network
is greater than the number of network neurons, the general
BAM (GBAM) [4] used linear separability condition and
increased the capacity slightly greater than the number of
neurons in its layer.

In our generalized asymmetrical BAM (GABAM), sim-
ply multiplying input weighting matrix to the transition
matrix of KBAM and deriving unique learning algorithm
outperform the previous models.

2. Structure

Let (xi, yi), i = 1, · · · , p, be the desired bipolar pattern
pairs. Dimensions ofxi andyi aren andm respectively.
KBAM learns the pairs using transition matrix below:

W =
∑

i

yixiT

xiT xi
. (1)
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If a patternx is applied to input layer, eachyi is summed
in output layer with a weighting factor proportional to
(xiT x)/(xiT xi) = 1 − 2dh(xi, x) where dh(xi, x) is
(
∑

xk 6=xi
k
1)/n, the Hamming distance divided byn. WT

is used in backward association.
When human recognizes patterns, there are certain fea-

ture points more helpful to make a decision. Considering
the different usefulness of each pixel information, diagonal
matrixΛi = diag(λi

1, . . . , λ
i
n) can be multiplied before the

correlation matrix. We suggest new forward and backward
transition matricesWf andWb as follows:

Wf =
∑

i

yixiT Λi
f

xiT Λi
fxi

, Wb =
∑

i

yixiT Λi
b

xiT Λi
bx

i
. (2)

Applying a patternx, eachyi is summed with a weight-
ing factor (xiT Λix)/(xiT Λixi) = 1 − 2dΛi(xi, x),
if new distance measure,dΛi(xi, x), is defined as
(
∑

xk 6=xi
k
λi

k)/(
∑

k λi
k), whereλi

k reflects the usefulness
of k-th input element.Wb is used in backward association.

3. Learning and Recall Process

Each weighting,xiT Λix, is equal to1−(x−xi)T Λi(x−
xi)/2 if eachλi

k is normalized at every learning step to sum
into one. The generalized radial basis function (GRBF)
network can be expressed as

y =
∑

i

wif((x − ci)T Λi(x − ci)), (3)

where activation functionf(u) = exp(−u). Although
GRBF does not include convergence procedure, GABAM
can be translated as GRBF withwi = yi, ci = xi, and
f(u) = 1 − u/2 from the static viewpoint. Original BAM
has no hidden layer. However, augmenting weighting ma-
trix Λi derives the virtual hidden layer from the transition
matrix. The wordvirtual means that it only exists during
learning process and merges into single transition matrix in
recall process. If the hyperbolic tangent function replaces
the usual sign output activation function, whole network
is differentiable and any kind of gradient descent algorithm
can be utilized to findΛi’s which minimize the overall clas-
sification errors.
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For the learning process, backpropagation algorithm
which uses only the first derivatives is adopted. To learn
the forward association, energy function is denoted by

E =
1
2
‖y − yi‖2 =

1
2

∑
k

(yk − yi
k)2.

If a stepsize of learning,η, is sufficiently small, this pattern
learning has the same performance with batch-type learn-
ing for all training pattern pairs. First, feedforward prop-
agation is performed for the current training pair,(xi, yi).
Calculating the output error, the error is propagated back-
wards.δo

k andδh
i denote the backpropagated error in output

and hidden layer respectively. Then,

δo
k = (yk − yi

k), (4)

δh
i =

∑
k

yi
k(1 − y2

k)δo
k, (5)

∂E

∂λi
j

= −2
m(xi

j 6= xj)
∑

k λi
k − ∑

xi
k
6=xk

λi
k

(
∑

k λi
k)2

δh
i , (6)

where

m(condition) =
{

1, if condition is true
0, otherwise.

(7)

Finally, λi
j is updated by

∆λi
j = −η

∂E

∂λi
j

. (8)

The backward association is learned in similar way.
The recall process is same with other BAM’s. Input pat-

tern continues propagating forwards and backwards repeat-
edly until it converges to a fixed point.

Like GRBF, the capacity of GABAM can be enhanced
through the node addition techniques. Although the acti-
vation function of hidden layer is linear so that it suffers
from low function approximation capability, nodes addi-
tion at centers of malfunctions brings about capacity im-
provement.

4. Experimental Results

The performance of an associative memory is usually
evaluated in terms of its storage capacity, noise immu-
nity, and spurious memories. These properties of GABAM
were compared with those of the most promising SBAM,
ABAM, and GBAM for the pattern recognition problem.

Storage capacities of five different models were com-
pared in case ofm = n = 10 by randomly generat-
ing 1000 test sets forK desired states (x-axis inFig. 1).
GABAM was superior to KBAM, competitive with ABAM
and SBAM, and overwhelmed by GBAM. GBAM, which
updates all elements in transition matrixW and does not
contain correlation matrix, is rather similar to feedforward
one-layer network. However, GABAM dividesW into cor-
relation matrix and input weighting matrix and adjusts only
the latter. Therefore, it locates between BAM and feedfor-
ward network.

To investigate noise immunity, 26 test pattern pairs, each
consisting of matched small-case and large-case alphabet
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Fig. 2 Comparison of models (noise immunity)

letters, were considered [4]. Dimensions of input and out-
put patterns were 49 (7 by 7 pixels).Figure 2 shows the re-
call result of four BAM’s in case of random-noise injection
from zero to twenty percent. Three variants of GABAM,
which used different number of virtual-layer-nodes and
training patterns, were suggested. The first variant re-
sults in the intermediate performance between GBAM and
ABAM. The graphs of the second and GBAM are almost
overlapped over all noise injection range because learn-
ing algorithm of GBAM, stemming from linear separability
condition, trains 49 by 49 weights to properly place hy-
perplanes, which is up to 49 by 52 weights updated by
the second variant of GABAM. Although the linear sep-
arability condition limits the capacity of both GBAM and
GABAM, GABAM converges faster due to the correlation
matrix. The third variant is trained in the broader training
set and overwhelms every BAM model.

Percentage of spurious memories was examined by gen-
erating 10,000 random initial states and checking whether
they converged into spurious states. The results are 71%,
86%, 92%, and 98% for GABAM, GBAM, ABAM, and
SBAM respectively.

5. Conclusion

The concept of BAM was generalized by introduc-
ing weighting matrix. The similarity to GRBF enables
GABAM to utilize various learning techniques for weight-
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ing matrix. The proposed GABAM was proved to have
large storage capacity, the best noise immunity, and the
least spurious memories among existing models.
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